Thermophysical Properties of Interfacial Layer in Nanofluids

Donggeun Lee*

School of Mechanical Engineering, RIMT, Pusan National University, 30 Jangjeon-dong,
Geumjeong-gu, Busan 609-735, Korea

Received October 21, 2006. In Final Form: December 18, 2006

Although recent experiments have revealed that nanofluids have superior thermal conductivities to base fluids, the inherent physics are not fully understood. In this study, an interfacial layer, competing with Brownian motion as a corresponding mechanism, is conceptually connected with the surface-charge-induced electrical double layer. By applying colloidal science, the first explicit equations for the thickness and thermal conductivity of the layer are obtained. A fractal model including the new concept of the layer is developed. The model predictions are compared with experimental data for effects of pH, temperature, volume fraction, and primary particle size of CuO−water nanofluids.

1. Introduction

Nanofluid, a colloidal liquid with nanoparticles, has increasingly attracted worldwide attention, since 1995 when Choi1 introduced a new kind of the heat-transport fluid. Many experimental results have followed the unbelievable report2 of Choi and his colleagues in 2001, citing more than 150% increase in effective thermal conductivity K_{eff} of carbon nanotube−olefin oil nanofluid with respect to that of the base fluid K_b. The mainstream experimental research was to find the best combination of particles and solvents1−3 and to find the most significant systematic parameters as well. The parameters may be sorted into three classes, i.e., particle-related, fluid-related, and interrelated parameters. The first kind includes size,3,4 morphology (elongated,2,6 spherical,3,7,8 and mass fractal-like9−14 shapes), and volume fraction of particles. The second would be thermophysical properties of the base fluid such as viscosity, thermal conductivity, and temperature.3,10,15 Interface chemical effect or interaction between the particles and base fluid6,14 would correspond to the last class.

* Author to whom correspondence should be addressed. Electronic mail: dongge@pusan.ac.kr. Tel +82-51-510-2365. Fax +82-51-512-5236.
(9) Xuan, Y.; Li, Q. Int. J. Heat Fluid Flow 2000, 21, 58−64.

Besides great interest in the K_{eff} of the nanofluid, several groups initiated investigation of more practical application fields such as microchannel heat sink,18 forced convective heat transfer fluids,19 and a lubricating fluid with high thermal conductivity.20 Although nanofluids in the field certainly look promising, it is not rare to find large discrepancies among the experimental data obtained by different research groups. Keblinski et al.21 addressed this as one of the primary obstacles to the development of nanofluids. Also, they concluded that poor characterization of the suspension, e.g., quantifying how stable the colloids is, could explain the inconsistencies in experiments in terms of inconsistent initial conditions of the nanofluids. Recently, we demonstrated that pH of the CuO−water nanofluid controlled the surface charge states as well as the interaction potentials. By using the Derjaguin−Landau−Verwey−Overbeek (DLVO) linearized mean field theory,22 we successfully quantified the suspension stability of the nanofluid and found that the K_{eff} was strongly correlated with the surface charge states.14 Right after this study, Prasher et al.23 suggested that the K_{eff} could be greatly changed by aggregation kinetics and the characteristic time for aggregation was influenced by various systematic parameters. Therefore, it is necessary to know a complete set of the three classes of parameters for a model evaluation or even for a fair comparison between experiments.

Keblinski et al.24 who gave the first reasonable insights of the mechanisms showed that Brownian motion (BM) was not responsible for the enhancement of the K_{eff}. However, a few groups such as Jang and Choi,25 Kumar et al.,26 and Prasher et al.27 are still arguing that the motion-related effect plays a dominant role, though their predictions were made with...
different equations. It is notable that the groups have all disregarded that the metal oxide particles used for the model evaluation were highly aggregated (see ref 16 in Jang and Choi, ref 14 in Kumar et al., and refs 1 and 4 in Prasher et al.27). Since aggregation of isolated (primary) particles decreases the speed at which particles are moving, use of the primary particle size can considerably overestimate the effect of the BM. Recent molecular dynamic simulation26 reveals that the hydrodynamic BM mechanism has only a minor effect on the K_{eff} even for a relatively high dose of nanoparticles (ca. 3.3 vol %). In this regard, the BM effect is not taken into account in this study.

On the other hand, some people have proposed a hypothetical concept of the ordered liquid layering around the particle—liquid interface as another reason for the enhancement of the K_{eff}. The good predictions with relevant models were, however, based on arbitrarily assumed values for thickness and thermal conductivity of the interfacial layer. Under the assumption of constant properties of the layer, any versions of the relevant model have never explained the pH dependence of the K_{eff} or the influence of the surface modification. The last mechanism suggested by Keblinski et al.24 is a percolation behavior of heat transport especially when the colloidal particles are agglomerated. The heat is preferably transferred through the aggregate backbone in a liquid sphere,25 so that the nanofluid containing aggregates may have higher effective thermal conductivity, compared to the case of disassembling the aggregates into their primary particles.

In this study, the author attempts to connect the concept of an interfacial layer with an electrical double layer (EDL) forming around the surfaces of particles in suspension. The thickness and thermal conductivity of the interfacial layer thereby have functional dependencies on systematic parameters. Regarding this, the author proposes a mathematical fractal model incorporating the afore-mentioned parameters and mechanisms. Quantitative comparisons of the model with the various experimental data will be seen.

2. Experimental Section

The experimental procedures from the sample preparation to the characterization of the colloids are revisited in view of a full set of data and briefly addressed as follows. As-received CuO nanoparticles (Aldrich, cat. no 54486–8) are highly agglomerated. Right after the particles are immersed into deionized water, the colloid is strongly agitated with 700 W ultrasonic waves. Such a high-powered ultrasonic treatment is thought in general to improve the stability of the colloids by tearing the agglomerates into their primary particles. But, many tests for different durations and powers of ultrasonication (Jeiotech, Kr., ULH-700S) revealed that the particles sustain their fractal shapes (see Figure 1 in ref 14).

A photon correlation method (Otsuka Electronics, Jp., ELS-8000) was used to estimate hydrodynamic radius R_h of particles moving in liquid14,22 through the measurement of diffusion coefficient of the particles. As far as Brownian motion of aggregates concerns, the R_h of aggregates is more important than the radius of their primary particles a. It is surprising that most of researchers claiming the BM mechanism have not attempted to measure the R_h. Figure 1 shows that the R_h of CuO aggregates in water ranges from 90 nm to 140 nm, depending on the pH of the nanofluid, whereas a was estimated to about 17.5 nm. Such large aggregates seem to be too big to generate any apparent size effect.25

The pH of the colloids was altered by adding suitable amounts of HCl or NaOH (Aldrich, cat. no 31894–9 or 30657–6, respectively). NaCl (Aldrich, cat. no 20443–9) as an electrolyte was used for keeping the total ionic strength consistent, but the dose level was much lower than the critical value (ca. 5×10^{-2} mol dm$^{-3}$) at which particles are settled by a violent aggregation. The volume fraction of particles is kept constant at 0.3% during the experiments. Effective thermal conductivity (K_{eff}) of the fluid is measured at 25 °C by a conventional transient hot wire device. The zeta potential ξ of the nanofluid measured from electrokinetic data (Otsuka Electronics, Jp., ELS-8000) was combined with a surface complexation model to obtain surface charge states. More details of the experimental and theoretical procedures are explained elsewhere.14 The author notes that these data are pretty close to the complete data set which was mentioned in the Introduction. The whole sets of the data at different pHs will be basically used for evaluating the present model. As such data have not been reported for other materials, further evaluation of the model will be limited to the CuO–water nanofluid in the literature. The model predictions for the influences of volume fraction, temperature, and primary particle size will also be presented.

3. Thermophysical Properties of Surface Charge-Induced Interfacial Layer

A. Thickness of Interfacial Layer (δ)

When materials such as oxides, sulfides, and insoluble salts are immersed in aqueous solution, they acquire surface charges, the presence of which builds up the surface electrostatic potentials. The surface charges attract and bind counterions with opposite polarity in liquid. Regarding that the ions are often hydrated, one may postulate that association of such ions with water molecules at the interface is the origin of the hypothetical charge-induced interfacial layer in the literature. The alternating alignment of the (often hydrated) ions may form liquid columns as depicted in Figure 2 with a bold-dotted box. The strong ionic bonds between the surface and the columns seem likely to reduce the Kapitza resistance significantly and make arrangements of the ions mimic the crystal structure of solid atoms at the surface as well. More detail mechanism about the EDL is described elsewhere.14,22

Since the thickness of the EDL often scales as a reciprocal Debye–Hückel parameter κ^{-1}, the thickness t can be expressed as

$$t = C\kappa^{-1}$$

where ε_0 is vacuum permittivity, F is Faraday constant, and R_0 is gas constant. The remaining properties such as dielectric constant ε_r, ionic strength I, and temperature T are all related to the solution. Thus, the thickness of the interfacial layer has now base-fluid dependence. In particular, increasing the temperature makes the layer thicker, resulting in an increase of the apparent volume fraction, through which the K_{eff} of nanofluids can then
be enhanced. The temperature dependence which has been thought to be a justification of the BM models can also be explained by the concept of the interfacial layer.

In the present condition, pH of solution can alter the κ^{-1} through the ionic strength I. For example, when the pH increases from 3 to 8, keeping the other parameters constant, the κ^{-1} increases from 7 to 13 nm. Taking κ^{-1} as the layer thickness t ($C = 1$), the t value is comparable to the primary particle radius of 17.5 nm but negligible compared to the R_i (from 90 to 140 nm) of the aggregates. As the primary particles get smaller, the contribution of the layer becomes greater.

B. Thermal Conductivity of Interfacial Layer (K_i). When recounting the concept of “liquid column” described in the previous section, if there exist more sites to launch the column (total charged surface density Γ_{ion}) and more ions to strengthen the column structure (ion density in the EDL given by α_{ij}, i.e., the product of charge density in the diffusive plane α_d and the Debye–Hückel parameter κ), this would in turn facilitate phonon transport from particle to particle. Interestingly, the experiment revealed that K_{eff} was expressed well as a power of $\Gamma_{ion} \alpha_d \kappa$. Hence, it seems plausible to assume that the thermal conductivity of the layer K_i is also expressed as a power function of $\Gamma_{ion} \alpha_d \kappa$. Note that the K_i of the EDL is limited by two extremes, i.e., K_l and K_s (thermal conductivity of the CuO). The upper limit ($K_l = K_{10}$) would be the case at the condition for complete ionization of the surface ($\Gamma_{ion} = \Gamma_{tot} = 5.88 \times 10^{-6} \text{ mol m}^{-2}$) and maximizing α_{ij} at pH 3. In this way, one may derive a reasonable functional relationship between K_i and $\Gamma_{ion} \alpha_d \kappa$ as

$$K_i - K_{10} = \left(\frac{\Gamma_{ion} \alpha_d \kappa}{\Gamma_{tot} \alpha_d \kappa_{pl=3}} \right)^\alpha$$

The exponent α is an adjustable parameter for fitting the experimental data. However, once α has been determined, the K_i value has an implicit temperature dependence through the terms of Γ_{ion}, σ_d, and κ. The validity of the equation will be discussed in the Discussion. In the Appendix, a theoretical procedure to estimate the surface charge states is described in detail, which is modified to consider varying temperatures on the basis of the previous theory.

4. Fractal Model

The fractal feature of aggregates is generally described by the following power law:

$$N_p = k_0 \left(R/R_0 \right)^{D_f}$$

where D_f is a fractal dimension, and k_0 and K_{10} are prefactors based on R and R_0, respectively. Koylu et al. performed a computer simulation for a diffusion-limited cluster–cluster aggregation and concluded that k_0 is related to k_{10} as a function of D_f as

$$k_0 = k_{10} \left(D_f + 2 \right)^{D_f/2}$$

The D_f value can be estimated from the slope of a log–log plot of N_p against R/R_0 according to eq 3 and ranges typically from 1.5 to 1.8 for the present shape of aggregates. Also, the k_0 obtained from the y-intercept in the plot is typically close to unity. The values of $D_f = 1.6$ and $k_0 = 1.34$ taken for the best fit in this study are comparable to those of Kim and Yuan, $D_f = 1.67$ and $k_0 = 0.83$; Wang et al., $D_f = 1.57$ and $k_0 = 1.0$; Xuan et al., $D_f = 1.51$ and $k_0 = 1.07$; and Lee and Choi, $D_f = 1.7$ and $k_0 = 1.34$. Substituting eq 4 to eq 3 gives

$$R_0 = R \left(\frac{D_f}{D_f + 2} \right)^{1/2}$$

While drying the sampled nanofluid on a grid for TEM observation, aggregates are moved and sometimes overlapped on the grid, which often makes it difficult to measure R precisely, whereas light scattering can directly measure R_h, which approximates R_h within 13% error. R and N_p are then obtained with given values of R_0, D_f, and d_f by eqs 3 and 5, respectively. Those are delivered to the following model for prediction of K_{eff}.

Similarly to the treatment of an aggregate presented by Wang et al., the present model consists of three sequential steps, from a primary particle with the EDL to the whole system of nanofluid via an equivalent sphere including an aggregate. Figure 3 shows

As a first step, a primary sphere covered with a layer is treated.

Step 1. Primary Particle Covered with Interfacial Layer.
As a first step, a primary sphere covered with a layer is treated as an imaginary sphere with radius of \(a + t \). The volume fraction \(\phi_1 \) of the core solid sphere in the core–shell structure is given by

\[
\phi_1 = \left(\frac{a}{a + t} \right)^3
\]

(6)

As pH goes far from the point of zero charge (PZC)\(^{14} \) of CuO in water, with a decrease in \(t \), the \(\phi_1 \) value increases up to 14.4%.

The Bruggeman effective medium theory (EMT), which is applicable to the whole range of concentration of an inclusion,\(^{17} \) is used to predict the effective thermal conductivity \(K_{\text{eff}} \) of the core–shell sphere by

\[
\phi_1 \left[\frac{K_s - K_{\text{cl}}}{K_s + 2K_{\text{cl}}} \right] + \left(1 - \phi_1 \right) \left[\frac{K_l - K_{\text{cl}}}{K_l + 2K_{\text{cl}}} \right] = 0
\]

(7)

where \(K_s \) and \(K_l \) have the same meanings as in eq 2. An explicit expression of \(K_{\text{eff}} \) is obtained by solving eq 7 for \(K_{\text{eff}} \) as

\[
K_{\text{eff}} = \frac{1}{4} \left[3\phi_1 (K_s - K_l) + (2K_l - K_s) + \sqrt{A} \right]
\]

(8)

where the term \(A \) is given by \(A = [3\phi_1 (K_s - K_l) + (2K_l - K_s)]^2 + 8K_lK_s \).

Step 2. An Aggregate Consisting of the Core–Shell Primary Particles.
An aggregate with an interfacial layer is modeled as a solid-phase element of another imaginary sphere with radius of \(R + t \) (see Figure 3). A volume fraction \(\phi_2 \) of the liquid-layered aggregate in the imaginary sphere is accordingly given by

\[
\phi_2 = \frac{(a + t)^3 N_p}{(R + t)^3}
\]

(9)

The Bruggeman model is again used to yield the thermal conductivity \(K_{\text{eff}} \) of the second imaginary sphere containing the aggregate, layer, and liquid. As the liquid-layered aggregate becomes a new solid fraction in the model, \(K_s \) and \(K_{\text{cl}} \) in eq 7 are replaced by \(K_s \) and \(K_{\text{cl}} \), respectively

\[
\phi_2 \left[\frac{K_{\text{cl}} - K_{\text{cl}}}{K_{\text{cl}} + 2K_{\text{cl}}} \right] + \left(1 - \phi_2 \right) \left[\frac{K_l - K_{\text{cl}}}{K_l + 2K_{\text{cl}}} \right] = 0
\]

(10)

Step 3. The Whole System where the Second Imaginary Spheres Are Suspended.
As number concentration \(n \) of the imaginary spheres should be identical to that of the original aggregates, it is determined by dividing the void volume fraction \((\phi_{\text{exp}}) \) of particles by mean volume \((\nu_s) \) of solid-phase aggregates as

\[
n = \frac{\phi_{\text{exp}}}{\nu_s} = \frac{3\phi_{\text{exp}}}{N_p 4\pi a^3}
\]

(11)

The product of \(n \) and mean volume \(\nu_s \) of the imaginary spheres gives the volume fraction \(\phi_3 \) of the spheres in liquid by

\[
\phi_3 = n \nu_s = \frac{4\pi}{3} (R + t)^3
\]

(12)

Assuming that the aggregates are uniformly distributed in liquid, the MG model\(^{17} \) is finally used to predict the \(K_{\text{eff}} \) of the nanofluid as

\[
\frac{K_{\text{eff}}}{K_l} = \frac{(1 - \phi_3) (K_s + 2K_l) + 3\phi_3 K_{\text{cl}}}{(1 - \phi_3) (K_s + 2K_l) + 3\phi_3 K_{\text{cl}}}
\]

(13)

5. Results

A. A Contribution of Brownian Motion of Fractal Aggregates.
Again in Figure 1, as pH departs from the isoelectric point of CuO particles (IEP \(\approx 8.5 \)), the \(\zeta \) potential increases gradually along with an increase of surface potential (\(\psi_0 \)). Since electrostatic repulsion energy between particles is proportional to \(\zeta^2 \) through DLVO theory,\(^{12,22} \) the colloidal system becomes less stable at this time. In this way, particles in liquid get bigger at an unstable pH condition, as seen in Figure 1. The \(R_h \) varies by about 48% at most, depending on the pHs. However, the BM model of Kumar et al.\(^{26} \) for \(R_h \) shows that \(K_{\text{eff}} \) varies by only 1% or less at the moment.

B. Model Prediction for pH Dependence of \(K_{\text{eff}} \).
Many ions, that exist in the region of \(x > \kappa^{-1} \), can be still associated with the afore-mentioned liquid columns, thereby decreasing the potential in the region. Here, the effective thickness of the interface layer is first approximated to double the \(\kappa^{-1} \) (see eq 1). The value of \(C \) is kept constant throughout the predictions in this study. The systematic parameters for the experiment and physical constants used for the model prediction are listed in Table 1. Figure 4 shows that the increment of the effective thermal conductivity \((K_{\text{eff}} - K_l) \) increases by a factor of 8 as pH decreases from \(8 \) to \(3 \) and the present model successfully predicts the pH dependence. To gain an insight into the pH dependence, any changes in all parameters at various pHs are monitored in Table 2. While decreasing the pH from \(8 \) to \(5.6 \), surface charge states in terms of ionized site density \((\Gamma_{\text{ion}}) \) and charge density \((\sigma_a) \) are both increased dramatically, but along with the very little increase in \(\phi_1 \). The thermal conductivity of the EDL \((K_l) \) is therefore enhanced by a factor of 2. This in turn increases the \(K_{\text{eff}} \) as well as \(K_{\text{cl}} \) by almost a factor of 2, subsequently. At this time, the outer radius of equivalent spheres containing aggregates \((R + t) \) decreases by only 24%. Thus, the volume fraction of the equivalent spheres \(\phi_3 \) decreases by 27%. In comparison to the changes in the thermal conductivities \(K_s \), \(K_{\text{cl}} \), and \(K_{\text{cl}} \), decreasing volume fraction \(\phi_3 \) generates a minor adverse effect on the \(K_{\text{eff}} \). So, it is clear that the abnormal enhancement of the \(K_{\text{eff}} \) is primarily due to the large increase in the thermal conductivity of the interface layer, which might be interpreted as the enhanced phonon transport as inferred before.

C. Prediction of Effects of Temperature, Volume Fraction, and Primary Particle Size.
In this section, the present model is further evaluated by comparing the predictions with other experimental results on the effects of temperature, volume fraction, and primary particle size. As indicated at the end of Introduction, surface charge states and fractal information \((D_t \) and \(R_h) \) should all be predetermined to give a correct prediction. But, such complete data sets for typical nanofluids have never been reported before. Since the charge states are the fundamental parameters determining \(D_t \) and \(R_h \), if the pH values of the colloidal liquids with the same contents are kept constant, the fractal information is likely not varied much. In this regard, the comparisons are limited to the case of CuO–water nanofluids. The data sets at pH = 7 in the previous section are used again for the predictions in this section.

The temperature effect is first chosen, because it has been considered evidence for the BM mechanism. There are two groups\(^{10,15} \) who experimentally report the temperature effect for CuO–water nanofluids at two different volume loadings of particles. As equilibrium constants \((K_p \) and \(K_d) \) for the surface ionization reaction are very sensitive to the temperature
T (see eq A3), the surface charge states in terms of Γ_{ion} and σ_d rapidly increases with T, as seen in Table 3, whereas, the thickness k^{-1} slowly increases with T. Thus, the thermal conductivity of the EDL (K_l in eq 2) has a strong temperature dependence.

As expected, Figure 5 shows that the present interfacial model predicts such a dependence. Also, note that the predictions for two different doses of CuO particles to water are in good agreements with the experiments, which is achieved with no further assumption. To know the effect of particle morphology, i.e., D_t, the prediction for $D_t = 2.1$ is also seen with a dotted line in the figure. At high D_t, in the denser structure of aggregates, the EDL is more often overlapped. This decreases the effective volume fraction ϕ_l faster than increasing the effective thermal conductivity K_l. Thus, at high D_t, the temperature effect is not as great as at low D_t, which means that open-structured aggregates in suspension is more desirable for enhancing the heat transport. This is consistent with the concept of “clustering” proposed by Keblinski et al.24

Second, the effect of volume fraction ϕ_{exp} on the K_{eff} is investigated. The literature data show three distinct differences in the effect, which are highlighted in Figure 6. In Das et al.,10 the nanofluid with the smallest primary particles has the smallest K_{eff} compared to the others. This seems to contradict the conventional size effect. The K_{eff} of the nanofluid of Eastman et al.16 linearly increases with particle loadings, while that of Li and Peterson15 has a flattened ϕ dependence. Why are there such distinct differences even for nanofluids of the same composition? Keblinski et al.23 recently addressed this, i.e., the lack of agreement between results obtained by different groups, as one of the big obstacles for development. This means that experimentation itself is a challenge. Are these all experimental errors?

The author attempts to answer the question using the present model. As a surprising result, the model predicts reasonably well all of the trends. This implies that the disagreement in experiments reflects differences in some parameters. Li and Peterson’s nanofluid contains smaller primary particles at higher temperature than that of Eastman et al. The former nanofluid has the advantage over the latter in effects of size and temperature, which explains the difference in the K_{eff} value at small ϕ_{exp}. The values for D_t and properties of the EDL used for the prediction in Figure 5 are consistently taken for the production of Figure 6. At the same $D_t (=1.6)$ and R_{op}, if the radius of primary particles a decreases, the number density n of aggregates increases according to eqs 3 and 11, which corresponds to Li and Peterson’s case. Also, regarding the fact that the EDL in the case of smaller a is relatively thicker, the effective volume fraction ϕ_l increases more rapidly than in the nanofluid of Eastman et al. and eventually reaches unity at $\phi_{\text{exp}} = 0.03$. That is why K_{eff} of Li and Peterson’s nanofluid does not increase further at $\phi_{\text{exp}} > 0.03$.

For the data from Das et al. in the figure, the model for $D_t = 1.6$ overestimates their data (not shown here). Rather, $D_t = 2.1$ was found for the best fit, which might be justified by looking at the TEM image of their aggregates.10 The aggregates have a much more compact structure than our aggregates have (see Figure 1 in ref 14), reflecting higher D_t for their aggregates. One may notice that their data are best fitted with $D_t = 2.1$ at 21 °C and with $D_t = 1.6$ at higher T (see Figure 5). As temperature increases, the surface charge increases along with electrostatic repulsion (see Table 3), which forces primary particles to repel each other, leading to a decrease in D_t. This might be consistent with the sudden increase of the K_{eff} in Figure 5 when T increases from 21 to 25 °C. Does the D_t change in reality? Unfortunately, the author is not in the position to explain what happened exactly.

Table 1. Parameters Used in the Present Study

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7</td>
</tr>
<tr>
<td>C_{exp}</td>
<td>5 x 10^{-4} mol dm^{-3}</td>
</tr>
<tr>
<td>T</td>
<td>298 K</td>
</tr>
<tr>
<td>K_{eff}</td>
<td>0.613 W m^{-1} K^{-1}</td>
</tr>
<tr>
<td>f</td>
<td>6 x 10^{-4} to 1.5 x 10^{-3} mol dm^{-3}</td>
</tr>
<tr>
<td>ϵ</td>
<td>80 for water; 8.854 x 10^{-12} C V^{-1} m^{-1}</td>
</tr>
<tr>
<td>K_l</td>
<td>2.1 for the best fit</td>
</tr>
<tr>
<td>F</td>
<td>96 485 C mol^{-1}</td>
</tr>
<tr>
<td>R_0</td>
<td>8.3 J mol^{-1} K^{-1}</td>
</tr>
</tbody>
</table>

* Mean value of thermal conductivities of base fluids with no particles measured at different pHs.
* From ref 33.
* Kept constant throughout the model evaluation unless otherwise noted.
* From ref 28.
between 21 and 25 °C, because the necessary data, in particular, the fractal information, is not available.

Finally, the influence of primary particle size is investigated. Regarding the issue of D_f, low D_f (≈1.6) is used for the predictions for the nano-fluids of Li and Peterson\(^3\) and Eastman et al.,\(^4\) while high D_f (≈2.1) is used for those of Das et al.,\(^5\) and Lee et al.\(^6\) Since all the literature does not report R_m, the value at pH = 7 in Table 2 is used for the predictions in Figure 7. The figure shows that the model predicts quite well the two distinct trends of experimental data. For the same T and pH, the thermal conductivity and thickness of the interfacial layer is not varied.

As primary particles get smaller in this case, relatively thicker EDL and larger N_p increase φ_k (≈(1/a)a; see eqs 3 and 9) much faster than they decrease φ_1 and K_c (refer to eqs 6 and 7 and Figure 3). This results in a slight increase of K_c and greater increase in φ_k (≈(1/a)$^{1-a}$; see eqs 3, 11, 12), which is a primary reason for enhancing the K_{eff}. This explains the rapid increase of the K_{eff} in the region of $a > 10$ nm at $D_f = 1.6$ in Figure 7. As a decreases further from 10 nm, the φ_k reaches unity eventually. Nearly at the same time, the φ_1 reaches unity too. In the calculation, once φ_2 or φ_3 reaches unity, a further increase in each term is not considered. However, K_c and K_c keep decreasing slightly due to a decrease of the actual solid fraction in an equivalent sphere with a radius of $R + t$. That is why there exists a maximum in K_{eff} for low D_f. This behavior with respect to the primary particle size was also observed experimentally by Xie et al.\(^4\) for an Al$_2$O$_3$-ethylene glycol nanofluid.

For the case of high D_f, aggregates have a denser structure where the EDLs have more chance to be overlapped even for the same a. This means that the φ_2 increases to unity faster than for low D_f. However, eq 5 shows that R for $D_f = 2.1$ is smaller than that for $D_f = 1.6$, implying that φ_k increases more slowly than for $D_f = 1.6$. From this reason, the K_{eff} is shown to increase with decreasing a over the whole size range. The predictions with two different fractal dimensions agree reasonably well with two groups of experimental data in Figures 6 and 7. It is likely that the fractal dimensions of the two categorized samples are not the same. Even though the present model resolves successfully the previous anomalies and contradictions in experiments, combining the concepts of fractal and EDL, the author would like to emphasize that the complete data sets such as surface charge states and fractal information should be reported for a better understanding of the abnormal behavior of nanofluids as well as proper evaluation of any theoretical models.

6. Discussion

A. Interpretation of the Conventional Interfacial Layer with Electrical Double Layer

The concept of liquid ordered (or structured) layering has been thought different from the EDL.\(^3\) Molecular ordering at surfaces results in structural and hydration forces. From the other side, EDL force produces electrostatic repulsion. One may have a question about the proximity of the interfacial layer to the EDL. Before discussing it, let me refer to very interesting experimental results\(^3\) where an optical technique such as sum-frequency generation was used to probe liquid molecular orientation at a surface. The results showed that water molecular ordering was greatly pronounced at the SiO$_2$/water interface as pH increases far from the point of zero charge (PZC) of SiO$_2$. Also, the paper presented that, at a neutral surface (pH = PZC) of SiO$_2$, the hydration force induced the single layer ordering by hydrogen bonds, whereas, at a highly charged surface, the spectral intensity corresponding to icelike structure was increased by a factor of 7 from the value at pH = PZC, implying that the electrostatic force induced longer-range orientation of water molecules at the ionized surface. Moreover, it was observed that Na$^+$ ions existing in the liquid could magnify the influence of electrostatic force on the molecular ordering at an intermediate pH.

These experimental results seem to say that, if the surface is ionized, surface ionized sites are better able to orient polar water molecules and/or counterions (hydrated or not) by hydrogen bonding and/or ionic bonding up to the longer range. Such ion associations should result in a gradual decrease in the potential. This is very similar to the description of Figure 2 and obviously indicates that a new type of ordering can be possible by electrostatic force due to the existence of the EDL. I focused on the electrostatic interaction between particle surface and surrounding water containing ions, rather than between the particles. In this way, the interfacial layer may be interpreted to or approximated with the EDL.

B. The Validity of the Power-Law Relation for Thermal Conductivity of the EDL

The effective thermal conductivity K_{eff} and thermal conductivity of the EDL K_1 can display different functional dependence versus $\Gamma_{ion}g_{6k}$. To determine the validity of the assumption in eq 2, I simulate the behaviors of the K_c, K_{c2}, and K_{eff} when independently varying K_1 from 0.6 to 20 (highest value at pH = 3). For the purpose of this simulation, other parameters such as φ_1, φ_2, φ_3, k^-, and R are fixed constant during the simulation with values at pH = 6. As a result, Figure 8 shows that K_c and K_{c2} both have nearly linear dependences on K_1 while K_{eff} has a power dependence on K_1. Because K_{eff}

Table 2. Parameters Used for Prediction of the pH Dependence at 25 °C

<table>
<thead>
<tr>
<th>pH</th>
<th>R_m/nm</th>
<th>k^-/nm</th>
<th>Γ_{ion}mol m$^{-2}$</th>
<th>σ/C m$^{-2}$</th>
<th>ϕ_1</th>
<th>K/W m$^{-1}$K$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>88.4</td>
<td>7.94</td>
<td>5.65×10^{-7}</td>
<td>5.44×10^{-2}</td>
<td>1.44×10^{-1}</td>
<td>19.92</td>
</tr>
<tr>
<td>5.6</td>
<td>93.9</td>
<td>13.72</td>
<td>5.29×10^{-8}</td>
<td>5.08×10^{-3}</td>
<td>5.91×10^{-2}</td>
<td>1.73</td>
</tr>
<tr>
<td>7.0</td>
<td>111.0</td>
<td>13.75</td>
<td>1.40×10^{-8}</td>
<td>1.29×10^{-3}</td>
<td>5.88×10^{-2}</td>
<td>0.87</td>
</tr>
<tr>
<td>8.0</td>
<td>128.2</td>
<td>13.74</td>
<td>4.43×10^{-9}</td>
<td>1.70×10^{-4}</td>
<td>5.89×10^{-2}</td>
<td>0.66</td>
</tr>
<tr>
<td>10.0</td>
<td>132.3</td>
<td>12.55</td>
<td>2.56×10^{-8}</td>
<td>2.44×10^{-3}</td>
<td>6.93×10^{-2}</td>
<td>1.14</td>
</tr>
<tr>
<td>11.0</td>
<td>121.7</td>
<td>7.94</td>
<td>8.30×10^{-8}</td>
<td>7.99×10^{-3}</td>
<td>1.44×10^{-1}</td>
<td>3.04</td>
</tr>
</tbody>
</table>

Table 3. Parameters Used for Prediction of the Temperature Dependence at pH = 7

<table>
<thead>
<tr>
<th>T°C</th>
<th>K_0/M$^{-1}$</th>
<th>K_0/M</th>
<th>k^-/nm</th>
<th>Γ_{ion}/mol m$^{-2}$</th>
<th>σ/C m$^{-2}$</th>
<th>f_1</th>
<th>K/W m$^{-1}$K$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>6.00×10^4</td>
<td>2.00 $\times 10^{-12}$</td>
<td>13.75</td>
<td>1.40×10^{-8}</td>
<td>1.29×10^{-3}</td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>7.83×10^4</td>
<td>2.61 $\times 10^{-12}$</td>
<td>13.86</td>
<td>1.63×10^{-8}</td>
<td>1.49×10^{-3}</td>
<td>0.91</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1.30×10^5</td>
<td>4.34 $\times 10^{-12}$</td>
<td>14.09</td>
<td>2.16×10^{-8}</td>
<td>1.90×10^{-3}</td>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>2.09×10^5</td>
<td>6.98 $\times 10^{-12}$</td>
<td>14.31</td>
<td>2.81×10^{-9}</td>
<td>2.34×10^{-3}</td>
<td>1.12</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>3.28×10^5</td>
<td>1.09 $\times 10^{-11}$</td>
<td>14.53</td>
<td>3.65×10^{-8}</td>
<td>2.80×10^{-3}</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>4.99×10^5</td>
<td>1.66 $\times 10^{-11}$</td>
<td>14.75</td>
<td>5.55×10^{-8}</td>
<td>2.84×10^{-3}</td>
<td>1.42</td>
<td></td>
</tr>
</tbody>
</table>
was displayed well with a power function of $\Gamma_{\text{cal}}/\Gamma_{\text{GEM}}$ from experiment,14 it is plausible to assume that K_1 has also a power dependence on the $\Gamma_{\text{cal}}/\Gamma_{\text{GEM}}$, but the exponents for K_1 and K_{eff} would be different.

C. Percolation Behavior of Heat through Aggregate Backbones. As the present model treats an agglomerate enclosed by a liquid sphere (see step 2) as an effective spherical percolation, the percolation should affect the prediction of the effective thermal conductivity K_{eff} of the effective sphere. The use of Bruggeman’s effective medium theory (EMT) in step 2 has to be justified. Strictly, the EMT corresponds to Bruggeman’s symmetric model (BSM), and its use should be restricted for effectively homogeneous and non-fractal media. For fractal and percolating media, the more general effective medium theory (GEM) of McLachlan et al.,39,40 that includes conductivity exponent t' and percolation threshold concentration f_0' should be applied.

According to McLachlan et al.,39 the percolation thresholds (volume fraction of more conducting inclusions) were not varied much from 0.16 for various lattices. Also, McLachlan40 suggested that the exponent was related to the threshold as $t' = 3f_0'$ (see p 870 in ref 40). With f_0' and t', K_{eff} at various pHs is estimated by the GEM. The GEM-generated K_{eff} considering the percolation effect was obtained under the assumption of perfect contact between primaries (e.g., sharp prolate ellipsoids), so that K_{eff}

\begin{equation}
\text{MOH} + H^+ \xrightarrow{K_p} \text{MOH}_2^+ \quad \text{MOH}_2^+ \xrightarrow{K_p} \exp \left(\frac{F\psi_0}{RT} \right) \frac{\Gamma(\text{MOH}_2^+)}{a(H^+)^2} \frac{\Gamma(\text{MOH})}{\Gamma(H^+^2)}(A1)
\end{equation}

where M is a metal cation, i.e., Cu(II) in this case, K_p and K_d are equilibrium constants for protonation and deprotonation, respectively, a is activity in the bulk of the solution, and ψ_0 is the surface potential. The equilibrium constants are not inde-
pendent of each other, but rather interrelated with the point of zero charge (PZC) of particles in water

\[
PZC = \frac{1}{2} \log \left(\frac{K_p}{K_d} \right)
\]

(A2)

The temperature dependence of the constant \(K_d \) is expressed by the van’t Hoff equation, and Hiemstra et al.\(^{35} \) suggested

\[
\ln \left[\frac{K_{d,T}}{K_{d,T_0}} \right] = -\frac{\Delta H_0}{R} \left[\frac{1}{T} - \frac{1}{T_0} \right]
\]

(A3)

The \(\Delta H_0 \) of metal oxide ranges from 15 to 90 kJ/mol,\(^{35} \) and 40 kJ/mol was taken for the estimation of the \(K_d \) in this study. In this way, when \(T \) increases from 25 to 70 °C, each of the \(K_p \) and \(K_d \) values increases by 1 order of magnitude, as seen in Table 3. At this moment, the charged cites, regardless of their polarities, can be associated further with counterions in the EDL as seen in Figure 2. In the previous work,\(^{14} \) the surface complexation by the counterions was considered. But at the low concentration of electrolyte, the association effect is quite negligible\(^{22} \) and therefore neglected in this study. A more simplified model to estimate the surface potential is thus readily derived as follows. The difference between the previous and present models is displayed in Figure 2.

Rearranging the terms in eq A1, the charged site densities (\(\Gamma(MOH_2^+) \) and \(\Gamma(MO^-) \)) are expressed as a function of uncharged site density \(\Gamma(MOH) \). The total sum of charged and uncharged site densities is equal to the total surface site density \(\Gamma_{tot} \) (ca. 5.9 × 10\(^{-6} \) mol/m\(^2\)).\(^{14} \) Using this, one can easily derive the following equations

\[
\Gamma(MOH) = \frac{\Gamma_{tot}}{1 + a_s(H^+)K_p + K_d/a_s(H^+)}
\]

(A4)

where the activity of \(H^+ \) at the surface is given by the Maxwell-Boltzman distribution\(^{22} \)

\[
a_s(H^+) = a(H^+) \exp \left(-\frac{F \psi_0}{RT} \right)
\]

(A7)

A sum of the charged site densities (\(\Gamma(MOH_2^+) + \Gamma(MO^-) \)) is referred to as \(\Gamma_{ion} \). Surface charge density \(\sigma_0 \) is given by the definition

\[
\sigma_0 = F[\Gamma(MOH_2^+) - \Gamma(MO^-)] = \frac{\Gamma_{tot}F}{1 + a_s(H^+)K_p + K_d/a_s(H^+)} [a_s(H^+)K_p - K_d/a_s(H^+)]
\]

(A8)

With known values of \(K_p \) and \(K_d \) at various temperatures, \(\sigma_0 \) is an only function of \(a_s(H^+) \) or a function of \(\psi_0 \) and \(T \). The \(\sigma_0 \) (approximated to \(\sigma_d \) by the simplified model in Figure 2) is balanced with the charge in the diffuse layer as

\[
\sigma_0 = -\sigma_d = -\frac{4FI}{\kappa} \sinh \left(\frac{F \psi_d}{2RT} \right) \approx \frac{4FI}{\kappa} \sinh \left(\frac{F \psi_0}{2RT} \right)
\]

(A9)

By equating eq A8 to eq A9, one gets a nonlinear equation for \(\psi_0 \) and \(T \). At a certain \(T \), numerical iteration for \(\psi_0 \) can easily give \(\psi_0 \) as a function of \(T \). Once \(\psi_0 \) is given, one can obtain all surface site densities and charge density \(\sigma_d \) as well (using eqs A4–6 and A9, respectively).

LA063094K